Affiliation:
1. Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No 5, Malang 65145, Indonesia
2. Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No 5 Malang 65145, Indonesia
Abstract
In this study, a new antimicrobial agent was developed through a synthesis of Fe3O4/SiO2/Ag double nanocomposites using the sol–gel method. The prepared samples were characterized using XRD, SEM, FTIR, UV-Vis, VSM, and antibacterial test. The data analysis results for the Fe3O4/SiO2/Ag composites showed that Fe3O4, SiO2, and Ag constructed respective spinel cubic, orthorhombic, and amorphous structures in nanometric size. The saturation magnetization of Fe3O4/SiO2/Ag nanocomposites decreased due to the increase in the Ag content. Interestingly, the Fe3O4/SiO2/Ag nanocomposites presented excellent microbial activity. Ag deposition on the Fe3O4/SiO2 surface enhanced the antimicrobial activity of nanocomposites because Ag oxidized to Ag[Formula: see text] ion to produce a toxic effect in the cells of microorganisms. Furthermore, the Ag[Formula: see text] ion created the –S–Ag bond chain and deactivated the microorganism cells. Furthermore, surface plasmon resonance of Ag had an impact on the formation of photo-induced electrons, which produced superoxide radical anions, [Formula: see text] generating a collapsing force that causes the death of microorganisms.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献