Platelet Nitrogen and Sulfur Co-Doped Ordered Mesoporous Carbon with Inexpensive Methylene Blue as a Single Precursor for Electrochemical Detection of Herbicide Amitrole

Author:

Zhou Shenghai1,Xu Hongbo1,Wei Yanjun1,Gao Jing1,Feng Yue1,Wang Ning2,Gao Junfeng1

Affiliation:

1. Department of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000, P. R. China

2. College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China

Abstract

Heteroatom-doped ordered mesoporous carbons (OMCs) have currently been considered as promising electrode materials for electrochemical sensors due to the combined advantages of ordered mesoporous materials and heteroatom-doped carbon materials. Herein, a novel nitrogen and sulfur co-doped OMCs (N,S-OMC) has been prepared via a nanocasting strategy with an inexpensive methylene blue as single precursor. The obtained mesoporous carbon has platelet morphology, short mesoporous channel together with a large surface area (549[Formula: see text]m2/g) as well as rich N- and S-containing functional groups (6.8[Formula: see text]at.% N and 2.3[Formula: see text]at.% S). Compared with the graphene (GR) and carbon nanotube (CNT) electrode material, the N,S-OMC exhibited a higher electrochemical activity towards the oxidation of herbicide amitrole, ascribable to N,S-OMC’s open mesoporous structures and abundant electroactive defect sites on the carbon skeleton. And, an amitrole electrochemical sensor with N,S-OMC modified electrode as working electrode was fabricated, exhibiting a good selectivity, stability, reproducibility and wide linear range of 3–750[Formula: see text][Formula: see text]M. Moreover, the N,S-OMC-based electrochemical sensor was proved feasible in river water sample analyses, showing a satisfied recovery ranging from 97.03% to 105.42%. The results not only demonstrate cheap methylene blue can be used as single precursor for the N,S-OMC preparation, but also confirm the N,S-OMC is promising in amitrole sensor fabrication.

Funder

the project of Hebei Province Natural and Scientific Foundation

the project of Chengde Science and Technology Bureau

the young foundation project of Hebei Province Educational Bureau

the top talent project of Hebei Province Educational Bureau

technology Support Program of Hebei Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3