EFFECT OF GRAPHITE PRECURSOR ON OXIDATION DEGREE, HYDROPHILICITY AND MICROSTRUCTURE OF GRAPHENE OXIDE

Author:

HU XUEBING123,YU YUN1,ZHOU JIANER2,SONG LIXIN1

Affiliation:

1. Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800, P. R. China

2. Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001, P. R. China

3. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Abstract

Graphene oxide (GO) has attracted much attention as a derivative of graphene. In addition, it appears to have many unique physicochemical properties and has been investigated widely in many areas. Herein, we prepare GOs using flake graphite (FG), expandable graphite (EG) and microcrystalline graphite (MG) as graphite precursors by the modified Hummers method. According to the X-ray diffraction (XRD), Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, we characterize the component, the functional group, the chemical state of the element and the structural disorder of the obtained GOs to reveal their oxidation degree. Besides, we evaluate the hydrophilicity of the obtained GOs with the water contact angle, and observe their microstructures by transmission electron microscopy (TEM). We find that the GO prepared with EG has a higher-degree oxidation and better hydrophilicity, and it will be exfoliated easily and forms a monolayer or quasi-monolayer structure. Finally, based on the structural characteristic of graphite precursor, we build the intercalation and oxidation model to illuminate the phenomenon.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3