Modelling and Analysis of Elliptical Cantilever Device Using Flexure Method and Fabrication of Electrospun PVDF/BaTiO3 Nanocomposites

Author:

Tamil Selvan Ramadoss1,Jayathilaka W. A. D. M.1,Chinappan Amutha1,Alam Hilaal2,Ramakrishna Seeram1

Affiliation:

1. Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore

2. Controls and Dynamics, Qubitor Pte Ltd, 79, JTC Launchpad@OneNorth 139955, Singapore

Abstract

Cantilever-based piezoelectric has been the most preferred technique for energy harvesting and sensing application due to its simple design. The energy conversion efficiency has been continuously improved by exploring alternative cantilever geometries by increasing the stress distribution on the beam surface. In this paper, we have introduced half elliptical and full elliptical profile modification in the cantilever structure to improve and uniformly distribute the stress at the beam surface. Stress distribution characteristics of the modified cantilever beams were investigated and compared using finite element analysis. Based on the theoretical and finite element analysis, cantilever beams were fabricated using 3D print technology. Fabricated cantilever beams were then used to investigate the piezoelectric performances of polyvinylidene fluoride (PVDF) in composite of barium titanate (BaTiO3) nanoparticles in the form of electrospun composite nanofibers. FTIR analysis shows successful conversion of alpha phase to beta phase of PVDF and PVDF/BaTiO3 nanocomposites. During 6[Formula: see text]Hz cyclic actuating experiment, maximum voltage output of 0.15[Formula: see text]V and 1.5[Formula: see text]nA current output were observed. The concept was proposed to replace MEMS-based sensor in hand tremor quantification to assist Parkinson disease management.

Funder

Ministry of Education - Singapore

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3