Experimental Study on the Effect of Conductive Carbon Black Super-P on the Properties of Composite Mortar

Author:

He Wei123,Wang Yawei123,Xu Jihang123

Affiliation:

1. College of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, P. R. China

2. Key Laboratory of Green Construction and Intelligent Operation and Maintenance for Civil Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China

3. Construction Low Carbon Clean Heating, Technology Innovation Center of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China

Abstract

Conductive carbon black Super-P (CSP) is a kind of nanomaterial, which is often used as conductive agent. It has excellent conductivity and low production cost. In this paper, CSP was used as the admixture to prepare composite mortar (with the specific gravity of cementitious material). The consistency, mechanical properties, electrical conductivity and temperature sensitivity of composite mortar were studied. The mechanism of CSP was analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the consistency of composite mortar decreases with the addition of CSP. The mechanical properties of composite mortar first increase and then decrease with the increase of CSP content. The addition of CSP greatly improves the conductivity of mortar. When the CSP content is 0.5–2%, the resistivity decreases rapidly and the seepage threshold appears. When the content of the mixture is large, the influence of different curing conditions on resistivity is small. SEM and XRD analysis show that CSP can fill micro pores and conduct electricity through tunnels, and does not change the composition of hydration products of composite mortar, and the formation of calcium hydroxide can be inhibited when the content is small. This paper explores the properties of CSP composite mortar, which provides theoretical and experimental basis for the preparation and application of conductive mortar.

Funder

Young Scientists Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3