Affiliation:
1. Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
Abstract
Deliberately engineering oxide composites on constructing and manipulating interactive structures particularly in surface layers was highly desirable for heterogeneous catalysis. Herein, upon the redox replacement reaction between Ce(IV) precursor (Ce(NO[Formula: see text] and Cu2O nano-substrate, an attempt to directly engineer the surface structure of Cu-based substrate was performed by the Ce(IV)–Cu2O etching-embedding process, then the obtained powders were thermo-treated to get a series of Ce–O–Cu catalysts with different Ce:Cu molar ratios for NH3 selective catalytic reduction (NH3-SCR) of NO. Characterized by ICP-OES, XRD, Raman, XPS, SEM, BET, H2-TPR, NO- and NH3-TPD measurements, it was demonstrated that the Cu–O–Ce catalysts were structured as CuO matrix with an interactive surface composed by co-present Cu(I)–Cu(II) and Ce(III)–Ce(IV) species, even the introduction of Ce was confined in a quite low loading range (0.83–2.3[Formula: see text]wt.%); such a surface exhibited the distinct synergistic effect with positively manipulated physical-chemistry properties such as active site distributions, redox features and surface reactivity compared to pure CuO and traditional Cu–Ce composite catalyst, leading to attractive catalytic performance such as [Formula: see text]% NO conversion with [Formula: see text]% N2 selectivity and the two-fold TOF enhancement versus traditional catalysts, even SO2 was present in reactant mixture on well-manipulated catalyst (Ce loading at 1.6[Formula: see text]wt.%) These results indicated that the etching-embedding strategy illuminated in this work could be referred as a feasible method to directly engineer and construct interactive oxide composite surface for advanced application as well as current efficient Ce–O–Cu catalytic interface for heterogeneous catalysis.
Funder
National Natural Science Foundation of China
Doctoral Fund of Ministry of Education of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献