Novel Design of Double Touch Plano-Convex MEMS Capacitive Pressure Sensor: Robust Design, Theoretical Modeling, Numerical Simulation and Performance Comparison

Author:

Rukshana Bi Gajula1ORCID,Kumar Jindal Sumit1ORCID

Affiliation:

1. School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

Abstract

Due to advancements in Micro-Electro-Mechanical Systems (MEMS) fabrication technologies, researchers are incorporating numerous innovations in the design of capacitive pressure sensors (CPS). This work aims to present a novel CPS design using a plano-convex substrate to enhance the capacitance and sensitivity. Diaphragm deflection occurs due to its elastic property when pressure is applied to the diaphragm. This deflection reduces the distance between the diaphragm and substrate, thereby remarkably increasing capacitance. The Plano-Convex design offers added advantages of increased contact area between the diaphragm and substrate under applied pressure, hence significantly enhancing sensor sensitivity and range. More efficient and miniaturized CPSs are in high demand in medical instrumentation, aerospace, aviation, power plants and automotive industries. This work presents all the required mathematical calculations, modeling and simulations to support the proposed design. The diaphragm deflection simulation concerning pressure is conducted using COMSOL Multiphysics, while MATLAB is employed for analytical simulations related to changes in capacitance and capacitive sensitivity.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3