Fabrication and Field-Emission Properties of Vertically-Aligned Tapered [110]Si Nanowire Arrays Prepared by Nanosphere Lithography and Electroless Ag-Catalyzed Etching

Author:

Feng Z.1,Lin K. Q.1,Chen Y. C.1,Cheng S. L.12ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, National Central University, Chung-Li District, Taoyuan City, Taiwan, R.O.C.

2. Institute of Materials Science and Engineering, National Central University, Chung-Li District, Taoyuan City, Taiwan, R.O.C.

Abstract

In this study, the controllable fabrication of a variety of vertically aligned, single-crystalline [110]-oriented Si nanowire arrays with sharp tips on (110)Si substrates is achieved using a combined self-assembled nanosphere lithography and multiple electroless Ag-catalyzed Si etching processes. All of the experiments were performed at room temperature. The morphological evolution and formation mechanism of long tapered [110]Si nanowire arrays during the multiple tip-sharpening cycle processes have been investigated by scanning electron microscopy, transmission electron microscopy and water contact angle measurements. Field emission measurements demonstrate that the field-emission behaviors of all nanowire samples produced in this study agree well with the Fowler–Nordheim theory, and the produced long tapered [110]Si nanowire array possesses superior electron emission characteristics, with a very low turn-on field of 1.4[Formula: see text]V/[Formula: see text]m and a high field enhancement factor of 3816. The simple and room temperature fabrication of the well-ordered long tapered [110]Si nanowire array and its excellent electron field emission performance suggest that it can serve as a good candidate for applications in high-performance Si-based vacuum electronic nanodevices.

Funder

The Ministry of Science and Technology of Taiwan, R.O.C.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3