CONTROLLED ELECTRIC FIELD-ASSISTED JETTING FROM VISCOUS AND NANOSUSPENSION MEDIA DROPLETS

Author:

JAYASINGHE S. N.1

Affiliation:

1. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom

Abstract

This paper reports a study into forming a jet-on-demand to continuous microthreads by subjecting electric fields on high viscosity and low conducting media (concentrated nanosuspensions and dielectric mediums) droplets, placed on a conducting copper plate, which has a similar plate above at a distance of ~ 10 mm. The media used in this investigation has a viscosity ≫ 1000 mPa s and an electrical conductivity ≪ 10-6 Sm-1 and in the case of nanomaterial loading in suspension is 003E; 15 wt.%. The investigation illustrates both the ability to form jets in this configuration and the importance of the volume of media placed as a droplet which has a direct result on the formation of a jet subsequently fragmentating to droplets. At a droplet volume of < Q0, the resting droplet when under the influence of an applied electric field deforms forming a cone, much like those referred to as the "Taylor Cones". On increasing the volume of the droplet to Q0 and applying a voltage of ~ 4.6 kV across the plates, the apex of the cone was observed to pulsate. On further increasing the applied voltage, giving rise to an electric field strength of ~ 0.55 kV/mm, the pulsating apex stabilizes to evolve a stable jet which undergoes instabilities promoting the generation of droplets. Consequently, a fine jet-on-demand is obtained. On increasing the droplet volume to > Q0, forms jets on both plates. The study elucidates the importance of this jetting approach for forming droplet relics containing self-assembled nanoparticles to continuous microthreads from concentrated nanosuspensions and dielectric media for forming structures by deposition that are most useful and have widespread applications in materials science and engineering. Hence, the physical behavior of this droplet deformation — jetting — forming droplets under an imposed field, outlines the discussion presented in this paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3