Affiliation:
1. College of Mechantronics Engineering, Nanchang University, Nanchang 330031, P. R. China
Abstract
In this work, a sandwich structure electrode was prepared by a simple vacuum filtration and rolling process. The SEM showed that the active materials were uniformly embedded in the pores of the three-dimensional conductive network of the carbon nanotube (CNTs) conductive paper. The contact interface area of active material and the conductive network significantly increased and the interface resistance was greatly reduced. The porous anode can accommodate the volume expansion of the silicon and effectively alleviated pressed during cycle. The electrode also exhibited good stability in cycles. Electrochemical tests showed that the first discharge specific capacity of the sandwich electrode reached 2330[Formula: see text]mAh/g with a coulombic efficiency of 86%. After 500 cycles, the specific capacity was still maintained at 1512[Formula: see text]mAh/g. At a large current density of 2[Formula: see text]A/g, the specific capacity hold was 840[Formula: see text]mAh/g compared with the copper foil electrode of 100[Formula: see text]mAh/g.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献