Preparation of All-Trans-Retinoic Acid-Loaded mPEG-PLGA Nanoparticles Using Microfluidic Flow-Focusing Device for Controlled Drug Delivery

Author:

Safari Mojdeh1ORCID,Amani Amir12,Adebileje Tajudeen1,Ai Jafar1,Rezayat Seyed Mahdi13,Ghanbari Hossein1,Faridi-Majidi Reza1

Affiliation:

1. Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2. Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

3. Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

In recent years, microfluidic devices present unique advantages for the development of a new generation of nanoparticle synthesis method compared to bulk methods. In this study, we report a microfluidic flow-focusing method for the production of all trans retinoic acid (ATRA)-loaded methoxy poly(ethylene glycol)-poly(lactide-coglycolide) (mPEG-PLGA) nanoparticles (NPs). Box–Behnken experimental design (BBD) was applied to optimize of formulation ingredients and process conditions with minimum particle size, maximum drug loading% (DL%) and encapsulation efficiency% (EE%). Polymer concentration, drug concentration and flow rates of solvent (S) and antisolvent (AS) were selected as independent variables. Based on optimization strategy, minimum particle size achieved shows average (SD) particle size of [Formula: see text][Formula: see text]nm with DL of [Formula: see text][Formula: see text]wt.% and EE of [Formula: see text][Formula: see text]wt.%, respectively. While maximum DL has been reported to be [Formula: see text][Formula: see text]wt.% with particle size of [Formula: see text][Formula: see text]nm and EE of [Formula: see text][Formula: see text]wt.%, respectively. Moreover, the results have shown that the AS/S ratio represents the most significant effect on particle size. Indeed, increasing the AS flow rate directly results in generating smaller particles. The AS/S ratio represents the least significant effect on DL%, such that, at fixed flow rates, higher DL was observed at high concentration of drug and lower concentration of polymer. In conclusion, optimization of the ATRA-loaded mPEG-PLGA NPs by BBD yielded in a favorable drug carrier for ATRA that could provide a new treatment modality for different malignancies.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3