Affiliation:
1. School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
2. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China
Abstract
The development of highly active catalysts for the pyrolysis of ammonium perchlorate (AP) is of considerable importance for AP-based composite solid propellant. In the present study, we produced porous MgFe2O4 architectures by using a facile two-step strategy. A rod-like precursor of MgFe2(C2O[Formula: see text]O (diameter: 0.5–2.5[Formula: see text][Formula: see text]m; length: 2–15[Formula: see text][Formula: see text]m) was fabricated under solvothermal conditions using metal sulfates as raw materials and oxalic acid as the precipitant. Subsequently, porous MgFe2O4 architectures were obtained by the thermal treatment of the as-prepared oxalate precursor, during which the mesopores were formed in situ via the liberation of volatile gases, while the rod-like morphology was well preserved. The catalytic performances of the as-synthesized porous rod-like MgFe2O4 architectures with respect to the AP pyrolysis were assessed using differential scanning calorimetry (DSC) techniques. The results indicated that the high thermal decomposition temperature and the apparent activation energy of AP with 2[Formula: see text]wt.% MgFe2O4 addition decreased from 445.4[Formula: see text]C to 386.7[Formula: see text]C and from [Formula: see text] to [Formula: see text][Formula: see text]kJ mol[Formula: see text], respectively. Meanwhile, the decomposition heat of AP with MgFe2O4 as the additive reached up to 1230.6[Formula: see text]J g[Formula: see text], which was considerably higher than that of its neat counterpart (695.8[Formula: see text]J g[Formula: see text]. Thus, porous rod-like MgFe2O4 architectures could be served as the catalyst for the AP pyrolysis.
Funder
National Natural Science Foundation of China
Chongqing Research Program of Basic Research and Frontier Technology
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献