Synthesis of Fe-g-C3N4/FePc/BiVO4 Nanocomposites for Efficient Degradation of RhB

Author:

Sui Tianshuo1,Mu Jingbo1ORCID,Yang Hang1,Che Hongwei1,Zhang Zhixiao1,Wang Yanming1,Zhang Xiaoliang1,Guo Zengcai1

Affiliation:

1. Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, P. R. China

Abstract

A novel photocatalyst comprising Fe-g-C3N4/FePc/BiVO4 heterostructure was synthesized using hydrothermal and muffle incineration methods. The synthesized catalyst was subjected to characterization using SEM, XRD, EDX, XPS, photocurrent response, and EIS analysis. Results showed that the Fe-g-C3N4/FePc/BiVO4 heterojunction composites significantly enhance the efficiency and stability of degradation of RhB. The unique advantages of the heterojunction composites include a wide range of light absorption and a small electron–hole complexation rate. Compared to pristine Fe-g-C3N4, FePc, and BiVO4, the photocatalytic activity and stability were significantly improved. The formation of a new structure of Fe-g-C3N4 and FePc and BiVO4 successfully adjusted the electron transfer route, resulting in more active sites and improving the efficiency of photogenerated charge separation. Furthermore, a possible mechanism for the photocatalytic degradation of RhB was proposed.

Funder

Central Government Guided Local Science and Technology Development Fund Project

Science and Technology Project of Hebei Education Department

Program for the Young Top Talents of Hebei Province

Natural Science Foundation of Hebei Province

Hebei talent project training funds

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3