Synthesis and Characterization of Multistage Porous Sodalite Nanocrystal Aggregate

Author:

Liu Zhigang1,Yu Yaxin1,Wang Chunmei1,Yang Lirong1ORCID

Affiliation:

1. Hebei Provincial Laboratory of Inorganic Nonmetallic Materials, Hebei Provincial Industrial Solid Waste, Comprehensive Utilization Technology Innovation Center, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, P. R. China

Abstract

Using the mixed solution of [Formula: see text]-butanol and ethanol as solvent, the sodalite nanocrystal aggregate was prepared by the solvothermal method. The influences of crystallization temperature, molar ratio Na/Al, crystallization time and silane concentration on the morphology, crystallite size, degree of crystallization and pore structure of the as-prepared samples were investigated by X-ray diffraction (XRD), BET, FTIR, Transmission Electron Microscopy (TEM) and scanning electron microscope (SEM). The results reveal that the sodalite nanocrystals are aggregated by self-assembly into the micropore–mesopore–macropore structure. Higher crystallization temperature and longer crystallization time are conducive to the growth of sodalite nanocrystals. It is a necessary condition for the formation of sodalite nanocrystals to keep high molar ratio Na/Al. The higher the molar ratio Na/Al, the more favorable the crystallization of sodalite nanocrystals. The appropriate concentration of silane agent is conducive to the preparation of smaller crystal-sized sodalite nanocrystals. After removing the silane agent by pickling, the sodalite nanocrystal aggregate is a multistage porous structure with the pore volume of 1.0133[Formula: see text]mL/g and the specific surface area of 449.73[Formula: see text]m2/g.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3