Cuprous Oxide Films Deposition by Mid-Frequency Magnetron Sputtering and Their Photocatalytic Activity under Visible Light

Author:

Mu Z. X.1,Li H.1ORCID,Deng X. N.1

Affiliation:

1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, P. R. China

Abstract

Cuprous oxide (Cu2O) has attracted much attention as a photocatalytic material. In this paper, the mid-frequency reactive magnetron sputtering method was used to prepare Cu2O films on glass slides, and the effects of oxygen flow and deposition time on the structures, morphologies and photocatalytic properties of the films were studied. The results show that the films prepared by this method have smooth surfaces and good absorptivity in the visible region. As the oxygen flow increases, the films transit from the mixed-phase of Cu and Cu2O to the single-phase of Cu2O. When the oxygen flow continues to increase, the films change to a mixed-phase of Cu4O3 and Cu2O. The photocatalytic decolorization of methyl orange under visible light irradiation conditions was used to assess the photocatalytic properties of the prepared films. When the oxygen flow is 6[Formula: see text]sccm and the deposition time is 15[Formula: see text]min, the film exhibits the best photocatalytic activity. Finally, the Mulliken electronegativity theory was used to explain the photocatalytic mechanism of Cu2O. This study confirmed the feasibility of preparing Cu2O photocatalytic films by magnetron sputtering, and provided the experimental basis for the subsequent study of Cu2O photocatalytic films.

Funder

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3