Design of Nonlinear Autoregressive Neuro-Computing Structure for Bioconvective Micropolar Nanofluidic Model

Author:

Shah Zahoor1ORCID,Jamil Attika1ORCID,Raja Muhammad Asif Zahoor2ORCID,Shoaib Muhammad3ORCID,Kiani Adiqa Kausar2ORCID

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Islamabad Campus, Pakistan

2. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, ROC

3. Yuan Ze University, AI Centre, Taoyuan 320, Taiwan, ROC

Abstract

In the present arena, the tools of artificial intelligence (AI) play a significant role in research across various fields by enabling advanced data analysis, pattern recognition and decision-making. This research work presents the numerical investigation of bioconvective micropolar nanofluidic model (BCMNFM) by employing the knacks of AI-based nonlinear autoregressive (NAR) approach with a combination of backpropagated Levenberg–Marquardt neural networks (BLMNNs) represented as NAR-BLMNNs. This research work investigates the flow design to highlight the attributes of mass and heat exchange. A dataset for BCMNFM is created by applying the Adam numerical procedure by variation of unsteadiness parameter ([Formula: see text], magnetic field parameter ([Formula: see text] thermophoresis parameter (Nt), Brownian motion parameter (Nb), bioconvection Peclet number (Pe) and spin gradient viscosity parameter ([Formula: see text] The skills of AI-based NAR-BLMNNs technique is then utilized on the dataset created for BCMNFM to investigate the approximate solutions. The achieved and impactful values of performance consistently range between [Formula: see text] and [Formula: see text] across all scenarios of BCMNFM. The precision and the validation of predicted approach NAR-BLMNNs is exceptionally established by the graphical demonstration for all scenarios of MSE, regression metrics, error histograms and time series graphs. The numerical calculations attained through AI-based NAR-BLMNNs technique further rationalize the precision of the proposed methodology for solving the BCMNFM effectively and efficiently.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3