Surface Plasmonic Lasing in Micro-Nanostructures of Silicon Excited by using Pulsed Infrared Lasers

Author:

Huang Wei-Qi12ORCID,Wang Zi-Lin1,Chen Cui-Fen1,Wang Ke1,Peng Hong-Yan1,Li Xin2,Wang An-Chen2,Huang Zhong-Mei2,Liu Shi-Rong3

Affiliation:

1. Department of Physics, Hainan Normal University, Haikou 571158, P. R. China

2. College of Materials and Metallurgy, Institute of Nanophotonic Physics, Guizhou University, Guiyang 550025, P. R. China

3. State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, P. R. China

Abstract

Surface plasmon is a possible candidate to break the diffraction limit and open the door for developing nanolasers on silicon chips. A new step in this development involves the choice of the structures and compositions for better surface plasmonic emission. The micro-nanostructures were fabricated by using a nanosecond pulsed laser on silicon surface, in which the surface plasmonic emission is stronger. The group of emission peaks with multiple-longitudinal-mode occurs in the optical gain curve. Interestingly, the quantum energy of surface plasmon with 140[Formula: see text]meV has been measured at first, which is related to the peak interval (about 62[Formula: see text]nm) of longitudinal modes in the surface plasmonic lasing spectra. The surface plasmonic lasing near 865[Formula: see text]nm was observed in the Purcell cavity with Si–Cr–Si layers excited by using pulsed lasers at 1064[Formula: see text]nm. Surface plasmonic structure induced with photons was observed by using the reflection Talbot effect image, in which the mechanism of the surface plasmonic lasing can be explored. The physical model of the surface plasmonic laser has been built on the energy levels of the micro-nanostructures of Si.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guizhou Province

Talent Research Fundation of Guizhou University

Youth Fund Training Program of Guizhou University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3