Investigation of Enhanced Volumetric Solar Steam Generation by a Lower Concentration of ZrC Nanofluid

Author:

Wang Kongxiang1ORCID,Xing Jiaojiao1,Kan Ankang2,Xie Huaqing1,Yu Wei1

Affiliation:

1. College of Engineering, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, P. R. China

2. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, P. R. China

Abstract

Solar steam generation is an efficient photo thermal conversion method, which has a wide range of applications in water purification and desalination. With an increasing requirement for technological advancements, the low efficiency of the working media has become a hindrance. In this work, ZrC nanofluid, which has good stability and broad-band absorption capability, was prepared to enhance the volumetric solar steam generation. The effect of ZrC nanoparticle concentration, within a large volume, on a solar steam generation was experimentally studied. It has been found that due to the unique optical absorption characteristics of ZrC nanoparticles, an advantageous temperature gradient with hot irradiation surface layer is attained and the irradiation energy is mostly absorbed by the top surface layer to generate steam. This reduces heat dissipation and improves the evaporation efficiency of the working media. Enhanced solar steam generation by using ZrC nanofluid in the base fluid reduces evaporation costs and expands its applicability in commercial production.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Shanghai Municipal Natural Science Foundation

The Key Subject of Shanghai Polytechnic University

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3