Three-Dimensional Graphene Oxide-Supported Zinc Oxide Scaffold as a High-Efficiency Adsorbent for Desulfurization

Author:

Liu Yan1,Zhang Xiaojun2,Yang Meiyan2,Guo Bowen2,Guo Jixiang3,Luo Dan2ORCID

Affiliation:

1. Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China

2. State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, P. R. China

3. The Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, P. R. China

Abstract

Sulfur oxides are air pollutants derived mainly from the combustion of gasoline. Reducing the sulfur content of fluid catalytic cracking (FCC) gasoline is of key importance for the prevention and control of atmospheric pollution. We describe herein the fabrication and characterization of a porous, three-dimensional (3D) graphene oxide-supported zinc oxide (GO/ZnO) scaffold as an adsorbent for desulfurization with various model compounds and real FCC gasoline. The uniform and stable dispersion of ZnO nanoparticles on the surface of GO facilitates the specific binding of sulfides. Moreover, GO synergistically adsorbs aryl sulfides via [Formula: see text]–[Formula: see text] stacking interactions. The GO/ZnO nanosheets were further self-assembled into a 3D porous scaffold that effectively trapped sulfides and inhibited desorption. These scaffolds exhibited excellent desulfurization performance with maximum sulfur capacity up to 29.73[Formula: see text]mg S/g. This work provides a novel perspective on the fabrication of high-efficiency adsorbents for gasoline pretreatment.

Funder

Beijing Municipal Natural Science Foundation

Science Foundation of China University of Petroleum, Beijing

Projects of Beijing Nova Programme Interdisciplinary Cooperation

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3