Affiliation:
1. Aristotles University of Thessaloniki, Thessaloniki, 54006, Greece
Abstract
The notion of fuzzy entropy (FuzzyEn) is extended to the multiscale case by combining FuzzyEn and empirical mode decomposition (EMD). The proposed technique, fuzzy intrinsic entropy (FIMEn) performs better than its predecessor intrinsic monde entropy (IMEn) and it is less dependent on the algorithmic parameters. In a pattern recognition context, FIMEn provides more separable clusters than IMEn when used for feature extraction, thus allowing for less classification error. The above results suggest that the proposed multiscale entropy metric is a very promising technique for evaluating data regularity and can be used effectively for feature extraction in pattern recognition problems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Information Systems