Semi-Automatic Online Tagging with K-Medoid Clustering

Author:

Hu He1,Du Xiaoyong1

Affiliation:

1. School of Information, Renmin University of China, Key Laboratory of Data Engineering and Knowledge Engineering, MoE, No. 59 Zhongguancun St., Beijing 100872, P. R. China

Abstract

Online tagging is crucial for the acquisition and organization of web knowledge. We present TYG (Tag-as-You-Go) in this paper, a web browser extension for online tagging of personal knowledge on standard web pages. We investigate an approach to combine a K-Medoid-style clustering algorithm with the user input to achieve semi-automatic web page annotation. The annotation process supports user-defined tagging schema and comprises an automatic mechanism that is built upon clustering techniques, which can automatically group similar HTML DOM nodes into clusters corresponding to the user specification. TYG is a prototype system illustrating the proposed approach. Experiments with TYG show that our approach can achieve both efficiency and effectiveness in real world annotation scenarios.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. K-Medoid Clustering for Heterogeneous DataSets;Procedia Computer Science;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3