DETECTING FAULT MODULES USING BIOINFORMATICS TECHNIQUES

Author:

STIGLIC GREGOR1,MERTIK MATEJ1,KOKOL PETER1,PIGHIN MAURIZIO2

Affiliation:

1. Laboratory for System Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

2. Department of Mathematics and Informatics, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

Abstract

Many software reliability studies attempt to develop a model for predicting the faults of a software module because the application of good prediction models provides important information on significant metrics that should be observed in the early stages of implementation during software development. In this article we propose a new method inspired by a multi-agent based system that was initially used for classification and attribute selection in microarray analysis. Best classifying gene subset selection is a common problem in the field of bioinformatics. If we regard the software metrics measurement values of a software module as a genome of that module, and the real world dynamic characteristic of that module as its phenotype (i.e. failures as disease symptoms) we can borrow the established bioinformatics methods in the manner first to predict the module behavior and second to data mine the relations between metrics and failures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3