CodeLabeller: A Web-Based Code Annotation Tool for Java Design Patterns and Summaries

Author:

Nazar Najam1ORCID,Chen Norman2,Chong Chun Yong3

Affiliation:

1. Department of Cyber Security and Digital Technologies, Victoria University, Australia

2. Faculty of Information Technology, Monash University, Australia

3. School of Information Technology, Monash University, Malaysia

Abstract

While constructing supervised learning models, we require labeled examples to build a corpus and train a machine learning model. However, most studies have built the labeled dataset manually, which, on many occasions, is a daunting task. To mitigate this problem, we have built an online tool called CodeLabeller. CodeLabeller is a web-based tool that aims to provide an efficient approach to handling the process of labeling source code files for supervised learning methods at scale by improving the data collection process throughout. CodeLabeller is tested by constructing a corpus of over a thousand source files obtained from a large collection of open source Java projects and labeling each Java source file with their respective design patterns and summaries. Twenty-five experts in the field of software engineering participated in a usability evaluation of the tool using the standard User Experience Questionnaire online survey. The survey results demonstrate that the tool achieves the Good standard on hedonic and pragmatic quality standards, is easy to use and meets the needs of annotating the corpus for supervised classifiers. Apart from assisting researchers in crowdsourcing a labeled dataset, the tool has practical applicability in software engineering education and assists in building expert ratings for software artefacts.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3