Improving Windows Malware Detection Using the Random Forest Algorithm and Multi-View Analysis

Author:

Syed Suhaila S.1ORCID,Sundara Krishnan K.1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamilnadu, India

Abstract

Cybercriminals motivated by malign purpose and financial gain are rapidly developing new variants of sophisticated malware using automated tools, and most of these malware target Windows operating systems. This serious threat demands efficient techniques to analyze and detect zero-day, polymorphic and metamorphic malware. This paper introduces two frameworks for Windows malware detection using random forest algorithms. The first scheme uses features obtained from static and dynamic analysis for training, and the second scheme uses features obtained from static, dynamic, malware image analysis, location-sensitive hashing and file format inspections. We carried out an extensive experiment on two feature sets, and the proposed schemes are evaluated using seven standard evaluation metrics. The experiment results demonstrate that the second scheme recognizes unseen malware better than the first scheme and three state-of-the-art works. The findings show that the second scheme’s multi-view feature set contributes to its 99.58% accuracy and lowers false positive rate of 0.54%.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3