EMSA: Extensibility Metric for Software Architecture

Author:

Kim Jungho1,Kang Sungwon2,Ahn Jongsun2,Lee Seonah3

Affiliation:

1. Department of Information and Communications Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea

2. School of Computing, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea

3. Department of Aerospace and Software Engineering & Department of Informatics, Gyeongsang National University, 501 Jinju-daero, Jinju, Republic of Korea

Abstract

Software extensibility, the capability of adding new functions to a software system, is established based on software architecture. Therefore, developers need to evaluate the capability when designing software architecture. To support the evaluation, researchers have proposed metrics based on quality models or scenarios. However, those metrics are vague or subjective, depending on specific systems and evaluators. We propose the extensibility metric for software architecture (EMSA), which represents the degree of extensibility of a software system based on its architecture. To reduce the subjectivity of the metric, we first identify a typical task of adding new functions to a software system. Second, we define the metrics based on the characteristics of software architecture and its changes and finally combine them into a single metric. The originality of EMSA comes from defining metrics based on software architecture and extensibility tasks and integrating them into one. Furthermore, we made an effort to translate the degree into effort estimation expressed as person-hours. To evaluate EMSA, we conducted two types of user studies, obtaining measurements in both a laboratory and a real-world project. The results show that the EMSA estimation is reasonably accurate [6.6% MMRE and 100% PRED(25%)], even in a real-world project (93.2% accuracy and 8.5% standard deviation).

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3