A Novel Overlapping Method to Alleviate the Cold-Start Problem in Recommendation Systems

Author:

Al-Sabaawi Ali M. Ahmed12,Karacan Hacer3,Yenice Yusuf Erkan1

Affiliation:

1. Department of Electrical Electronic and Computer Engineering, Aksaray University, Aksaray 68100, Turkey

2. Gifted Guardianship Committee, Ministry of Education, Mosul 41002, Iraq

3. Department of Computer Engineering, Gazi University, Ankara 119, Turkey

Abstract

Recommendation systems (RSs) are tools for interacting with large and complex information spaces. They provide a personalized view of such spaces, prioritizing items likely to be of interest to the user. The main objective of RSs is to tool up users with desired items that meet their preferences. A major problem in RSs is called: “cold-start”; it is a potential problem called so in computer-based information systems which comprises a degree of automated data modeling. Particularly, it concerns the issue in which the system cannot draw any inferences nor have it yet gathered sufficient information about users or items. Since RSs performance is substantially limited by cold-start users and cold-start items problems; this research study takes the route for a major aim to attenuate users’ cold-start problem. Still in the process of researching, sundry studies have been conducted to tackle this issue by using clustering techniques to group users according to their social relations, their ratings or both. However, a clustering technique disregards a variety of users’ tastes. In this case, the researcher has adopted the overlapping technique as a tool to deal with the clustering technique’s defects. The advantage of the overlapping technique excels over others by allowing users to belong to multi-clusters at the same time according to their behavior in the social network and ratings feedback. On that account, a novel overlapping method is presented and applied. This latter is executed by using the partitioning around medoids (PAM) algorithm to implement the clustering, which is achieved by means of exploiting social relations and confidence values. After acquiring users’ clusters, the average distances are computed in each cluster. Thereafter, a content comparison is made regarding the distances between every user and the computed distances of the clusters. If the comparison result is less than or equal to the average distance of a cluster, a new user is added to this cluster. The singular value decomposition plus (SVD[Formula: see text]) method is then applied to every cluster to compute predictions values. The outcome is calculated by computing the average of mean absolute error (MAE) and root mean square error (RMSE) for every cluster. The model is tested by two real world datasets: Ciao and FilmTrust. Ultimately, findings have exhibited a great deal of insights on how the proposed model outperformed a number of the state-of-the-art studies in terms of prediction accuracy.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reinforcement Learning Recommendation Algorithm Based on Label Value Distribution;Mathematics;2023-06-28

2. An improved collaborative filtering model based on time weighted correlation coefficient and inter-cluster separation;International Journal of Machine Learning and Cybernetics;2023-05-18

3. Construction of a personalised online learning resource recommendation model based on self-adaptation;International Journal of Knowledge-Based Development;2023

4. A Review Paper of Model Based Collaborative Filtering Techniques;2022 International Conference on Data Science and Intelligent Computing (ICDSIC);2022-11-01

5. Exploiting Textual Reviews for Recommendation Systems Improvement;2022 International Conference on Data Science and Intelligent Computing (ICDSIC);2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3