Augmenting Bug Localization with Part-of-Speech and Invocation

Author:

Zhou Yu1,Tong Yanxiang2,Chen Taolue3,Han Jin4

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210006, China

2. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

3. Department of Computer Science, Middlesex University London, The United Kingdom

4. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Bug localization represents one of the most expensive, as well as time-consuming, activities during software maintenance and evolution. To alleviate the workload of developers, numerous methods have been proposed to automate this process and narrow down the scope of reviewing buggy files. In this paper, we present a novel buggy source-file localization approach, using the information from both the bug reports and the source files. We leverage the part-of-speech features of bug reports and the invocation relationship among source files. We also integrate an adaptive technique to further optimize the performance of the approach. The adaptive technique discriminates Top 1 and Top N recommendations for a given bug report and consists of two modules. One module is to maximize the accuracy of the first recommended file, and the other one aims at improving the accuracy of the fixed defect file list. We evaluate our approach on six large-scale open source projects, i.e. ASpectJ, Eclipse, SWT, Zxing, Birt and Tomcat. Compared to the previous work, empirical results show that our approach can improve the overall prediction performance in all of these cases. Particularly, in terms of the Top 1 recommendation accuracy, our approach achieves an enhancement from 22.73% to 39.86% for ASpectJ, from 24.36% to 30.76% for Eclipse, from 31.63% to 46.94% for SWT, from 40% to 55% for ZXing, from 7.97% to 21.99% for Birt, and from 33.37% to 38.90% for Tomcat.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3