Log-Based Anomaly Detection with the Improved K-Nearest Neighbor

Author:

Wang Bingming1,Ying Shi1,Cheng Guoli1,Wang Rui1,Yang Zhe1,Dong Bo1

Affiliation:

1. School of Computing, Wuhan University, Wuhan 430072, P. R. China

Abstract

Logs play an important role in the maintenance of large-scale systems. The number of logs which indicate normal (normal logs) differs greatly from the number of logs that indicate anomalies (abnormal logs), and the two types of logs have certain differences. To automatically obtain faults by K-Nearest Neighbor (KNN) algorithm, an outlier detection method with high accuracy, is an effective way to detect anomalies from logs. However, logs have the characteristics of large scale and very uneven samples, which will affect the results of KNN algorithm on log-based anomaly detection. Thus, we propose an improved KNN algorithm-based method which uses the existing mean-shift clustering algorithm to efficiently select the training set from massive logs. Then we assign different weights to samples with different distances, which reduces the negative effect of unbalanced distribution of the log samples on the accuracy of KNN algorithm. By comparing experiments on log sets from five supercomputers, the results show that the method we proposed can be effectively applied to log-based anomaly detection, and the accuracy, recall rate and F measure with our method are higher than those of traditional keyword search method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Minimum Universal Features Set for IoT DDoS Attack Detection;2024-09-13

2. Contextual Anomaly Detection in Hot Forming Production Line using PINN Architecture;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

3. NNCR: Revising Classifications using Embedding Based K-Nearest-Neighbor Search;2023 IEEE International Conference on Big Data (BigData);2023-12-15

4. An Anomaly Detection Framework for System Logs Based on Ensemble Learning;PRICAI 2023: Trends in Artificial Intelligence;2023-11-10

5. Multi-Type Anomaly Detection Using One Deep Neural Model for QAR Data;2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3