Handling Quantity in Variability Models for System-of-Systems

Author:

Shimbara Daisuke1,Saeki Motoshi2,Hayashi Shinpei2,Haugen Øystein3

Affiliation:

1. Research and Development Group, Hitachi, Ltd, Yoshida-cho 292, Yokohama-shi, Kanagawa, 244–0817, Japan

2. School of Computing, Tokyo Institute of Technology, Ookayama 2–12–1, Meguro-ku, Tokyo 152–8552, Japan

3. Faculty of Computer Science, Østfold University College, NO–1757 Halden, Norway

Abstract

Problem: Modern systems contain parts that are themselves systems. Such complex systems thus have sets of subsystems that have their own variability. These subsystems contribute to the functionality of a whole system-of-systems (SoS). Such systems have a very high degree of variability. Therefore, a modeling technique for the variability of an entire SoS is required to express two different levels of variability: variability of the SoS as a whole and variability of subsystems. If these levels are described together, the model becomes hard to understand. When the variability model of the SoS is described separately, each variability model is represented by a tree structure and these models are combined in a further tree structure. For each node in a variability model, a quantity is assigned to express the multiplicity of its instances per one instance of its parent node. Quantities of the whole system may refer to the number of subsystem instances in the system. From the viewpoint of the entire system, constraints and requirements written in natural language are often ambiguous regarding the quantities of subsystems. Such ambiguous constraints and requirements may lead to misunderstandings or conflicts in an SoS configuration. Approach: A separate notion is proposed for variability of an SoS; one model considers the SoS as an undivided entity, while the other considers it as a combination of subsystems. Moreover, a domain-specific notation is proposed to express relationships among the variability properties of systems, to solve the ambiguity of quantities and establish the total validity. This notation adapts an approach, named Pincer Movement, which can then be used to automatically deduce the quantities for the constraints and requirements. Validation: The descriptive capability of the proposed notation was validated with four examples of cloud providers. In addition, the proposed method and description tool were validated through a simple experiment on describing variability models with real practitioners.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3