An Approach to Software Defect Prediction Combining Semantic Features and Code Changes

Author:

Tao Chuanqi1,Wang Tao1ORCID,Guo Hongjing1,Zhang Jingxuan1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China

Abstract

Software defect prediction (SDP), which predicts defective code regions, can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Previous work on defect prediction has used machine learning and artificial software metrics. However, traditional defect prediction features extracted from artificial software metrics often fail to capture the syntactic and semantic information of defective modules. This work on defect prediction mostly focuses on abstract syntax tree (AST). Moreover, because current research on AST technology is relatively mature, it is difficult to further improve the accuracy of defect prediction when only using AST to characterize codes. In this paper, in order to capture more semantic features, we extract semantic information both from the sequences of AST tokens and code change tokens. In addition, to leverage the traditional features extracted from statistical metrics, we also combine the semantic features with traditional defect prediction features to perform SDP, and use the gated fusion mechanism to determine the combination ratio of the two kinds of features. In our empirical studies, 10 open-source Java projects from the PROMISE repository are chosen as our empirical subjects. Experimental results show that our proposed approach can perform better than several state-of-the-art baseline SDP methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3