A Dynamic Drilling Sampling Method and Evaluation Model for Big Streaming Data

Author:

Zhang Zhaohui1ORCID,Zhang Pei1,Zhang Peng1,Xu Fujuan1,Hu Chaochao1,Wang Pengwei1

Affiliation:

1. School of Computer Science and Technology, Donghua University, Shanghai, P. R. China

Abstract

The big data sampling method for real-time and high-speed streaming data is prone to lose the value and information of a large amount of discrete data, and it is not easy to make an efficient and accurate evaluation of the value characteristics of streaming data. The SDSLA sampling method based on mineral drilling exploration can evaluate the valuable information of streaming data containing many discrete data in real-time, but when the range of discrete data is irregular, it has low sampling accuracy for discrete data. Based on the SDSLA algorithm, we propose a dynamic drilling sampling method SDDS, which takes well as the analysis unit, dynamically changes the size and position of the well, and accurately locates the position and range of discrete data. A new model SDVEM is further proposed for data valuation, which evaluates the sample set from discrete, centralized, and overall dimensions. Experiments show that compared with the SDSLA algorithm, the sample sampled by the SDDS algorithm has higher evaluation accuracy, and the probability distribution of the sample is closer to the original streaming data, with the AOCV indicator being nearly 10% higher. In addition, the SDDS algorithm can achieve over 90% accuracy, recall, and F1 score for training and testing neural networks with small sampling rates, all of which are higher than the SDSLA algorithm. In summary, the SDDS algorithm not only accurately evaluates the value characteristics of streaming data but also facilitates the training of neural network models, which has important research significance in big data estimation.

Funder

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of Big Data Anomaly Detection Algorithm Based on Neural Network Under Cloud Computing Platform;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3