Bug Localization with Features Crossing and Structured Semantic Information Matching

Author:

Xu Guoqing12,Wang Xingqi12,Wei Dan12,Shao Yanli12,Chen Bin12

Affiliation:

1. School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

2. Key Laboratory of Discrete Industrial Internet of Things of Zhejiang Province, HangZhou 310018, P. R. China

Abstract

Bug localization techniques aim to locate the relevant buggy source files according to the bug described by the given bug report, so as to improve the localization efficiency of developers and reduce the cost of software maintenance. The traditional bug localization techniques based on Information Retrieval (IR) usually use the classical text retrieval model and combines the specific domain knowledge features in software engineering to locate the bugs. However, there exists the vocabulary mismatch problem between the bug report and the source file, which may affect the performance of bug localization. Therefore, the relevant deep learning model was introduced later to compute the similarity between the bug report and the source file from the perspective of semantic features. Bug localization approaches based on IR and deep learning have their own advantages and disadvantages, so this paper proposes a model named LocFront which combines IR and deep learning. On the one hand, the Features Crossing module in LocFront carries out the deep crossing operation on the extracted software-specific features to fully acquire the linear and nonlinear relationships. On the other hand, the Structured Semantic Information Matching module in LocFront performs semantic matching on the structured information between the bug report and the source file. Then the Fusion module in LocFront fuses the results of the two above modules to obtain the final localization score. The experimental results on five benchmark datasets show that LocFront outperforms the state-of-the-art bug localization approaches.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3