Overcoming Heterogeneity in Business Process Modeling with Rule-Based Semantic Mappings

Author:

Prackwieser Christoph1,Buchmann Robert1,Grossmann Wilfried1,Karagiannis Dimitris1

Affiliation:

1. Faculty of Computer Science, University of Vienna, Waehringerstrasse 29, Vienna, 1090, Austria

Abstract

The paper tackles the problem of notational heterogeneity in business process modeling. Heterogeneity is overcome with an approach that induces semantic homogeneity independent of notation, driven by commonalities and recurring semantics in various control flow-oriented modeling languages, with the goal of enabling process simulation on a generic level. Thus, hybrid process models (for end-to-end or decomposed processes) having different parts or subprocesses modeled with different languages become simulate-able, making it possible to derive quantitative measures (lead time, costs, or resource capacity) across notational heterogeneity. The result also contributes to a better understanding of the process structure, as it helps with identifying interface problems and process execution requirements, and can support a multitude of areas that benefit from step by step process simulation (e.g. process-oriented requirement analysis, user interface design, generation of business-related test cases, compilation of handbooks and training material derived from processes). A use case is presented in the context of the ComVantage EU research project, where notational heterogeneity is induced by: (a) the specificity and hybrid character of a process-centric modeling method designed for the project application domain, and (b) the collaborative nature of the modeling effort, with different modelers working with different notations for different layers of abstraction in a shared on-line tool and model repository.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PQ-Diff: A Business Process Difference Detection and Interpretation Method based on the Common Key Structure;2022 IEEE International Conference on Services Computing (SCC);2022-07

2. Use case repository framework based on machine learning algorithm to analyze the software development estimation with intelligent information systems;International Journal of Wavelets, Multiresolution and Information Processing;2019-03-27

3. Dynamical Aspects of Knowledge Evolution;IFIP Advances in Information and Communication Technology;2019

4. Conceptual Modelling Methods: The AMME Agile Engineering Approach;Domain-Specific Conceptual Modeling;2018

5. Conceptual Modelling Methods: The AMME Agile Engineering Approach;Lecture Notes in Business Information Processing;2017-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3