TRAFMEL: Multimodal Entity Linking Based on Transformer Reranking and Multimodal Co-Attention Fusion

Author:

Zhang Xiaoming1ORCID,Meng Kaikai1ORCID,Wang Huiyong1ORCID

Affiliation:

1. School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China

Abstract

Multimodal entity linking aims to link mentions to target entities in the multimodal knowledge graph. The current multimodal entity linking mainly focuses on the global fusion of text and image, seldom fully exploring the correlation between modalities. In order to improve the fusion effect of multimodal feature, we propose a multimodal entity linking model based on a Multimodal Co-Attention Fusion strategy. This strategy is designed to enable text and image to guide each other for extracting features, thus making full exploration of the correlation between modalities to improve the fine-grained feature fusion effect. Furthermore, we also design a candidate entity generation strategy based on Transformer, which combines multiple candidate entity sets and adjusts the candidate entity ranking to obtain high-quality candidate entity sets. We perform experiments on domain datasets and public datasets, and the experimental results demonstrate that our model has a good performance in candidate entity generation and multimodal feature fusion, outperforming the state-of-the-art baseline models.

Funder

Hebei Natural Science Foundation

Science and Technology Project of Hebei Education Department

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3