DTester: Diversity-Driven Test Case Generation for Web Applications

Author:

Wu Shumei1ORCID,Chang Zexing1ORCID,Zhang Zhanwen1ORCID,Li Zheng1ORCID,Liu Yong1ORCID

Affiliation:

1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100000, P. R. China

Abstract

Search-based Test Case Generation (TCG) for web applications suffers from unstable performance and suboptimal test suite problems due to diversity loss. However, previous diversity metrics mainly only focus on client-side models or server-side code, which are prone to low robustness and poor generalization in practical applications. We propose a diversity-driven TCG method DTester, which can maximize behavior exploration and minimize the test suite size while covering more server-side vulnerable paths. Three diversity metrics (i.e. phenotypic coupling, intent coupling and competitiveness) are proposed to measure the underlying relationship between test cases from user behavior, code logic and test execution history. Moreover, a 3-dimensional weight graph is designed to model association among metrics, which provides fine-grained guidance for the genetic algorithm to generate diverse test cases from the client-side behavior model. Our empirical evaluation on five web applications shows that DTester can efficiently and robustly generate better test suites than the state-of-the-art TCG method. The maximum improvement is [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] in efficiency, test suite size, diversity and robustness.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Test Case Generation for Web Applications with Limited Resources;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3