OC-Detector: Detecting Smart Contract Vulnerabilities Based on Clustering Opcode Instructions

Author:

Gu Xiguo12ORCID,Zheng Liwei1ORCID,Yang Huiwen1ORCID,Liu Shifan1ORCID,Cui Zhanqi12ORCID

Affiliation:

1. School of Computer Science, Beijing Information Science and Technology University, Beijing 100101, P. R. China

2. Key Laboratory of Safety-Critical Software, (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information, Nanjing 211106, P. R. China

Abstract

Smart contracts are programs running on blockchain. In recent years, due to the persistent occurrence of security-related accidents in smart contracts, the effective detection of vulnerabilities in smart contracts has received extensive attention from researchers and engineers. Machine learning-based vulnerability detection techniques have the advantage that they do not need expert rules for determining vulnerabilities. However, existing approaches cannot identify vulnerabilities when the versions of smart contract compilers are updated. In this paper, we propose OC-Detector (Opcode Clustering Detector), a smart contract vulnerability detection approach based on clustering opcode instructions. OC-Detector learns the characteristics of opcode instructions to cluster them and replaces opcode instructions belonging to the same cluster with the ID of the cluster. After that, the similarity between the contract under analysis and contracts in the vulnerability database is calculated to identify vulnerabilities. The experimental results demonstrate that OC-Detector improves the F1 value of detecting vulnerabilities from 0.04 to 0.40 compared to DC-Hunter, Securify, SmartCheck and Osiris. Additionally, compared to DC-Hunter, the F1 value is improved by 0.27 when detecting vulnerabilities in smart contracts compiled by different versions of compilers.

Funder

Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space

Beijing Information Science and Technology University “Qin-Xin Talent” Cultivation Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3