DYNAMIC KNOWLEDGE EXTRACTION FROM SOFTWARE SYSTEMS USING SEQUENTIAL PATTERN MINING

Author:

SARTIPI KAMRAN1,SAFYALLAH HOSSEIN1

Affiliation:

1. Department of Computing and Software, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

Abstract

Software system analysis for identifying software functionality in source code remains a major problem in the reverse engineering literature. The early approaches for extracting software functionality mainly relied on static properties of software system. However, the static approaches by nature suffer from the lack of semantic and hence are not appropriate for this task. This paper presents a novel technique for dynamic analysis of software systems to identify the implementation of certain software functionality known as software features. In the proposed approach, a specific feature is shared by a number of task scenarios that are applied on the software system to generate execution traces. The application of a sequential pattern mining technique on the generated execution traces allows us to extract execution patterns that reveal the specific feature functionality. In a further step, the extracted execution patterns are distributed over a concept lattice to separate feature-specific group of functions from commonly used group of functions. The use of lattice also allows for identifying a family of closely related features in the source code. Moreover, in this work we provide a set of metrics for evaluating the structural merits of the software system such as component cohesion and functional scattering. We have implemented a prototype toolkit and experimented with two case studies Xfig drawing tool and Pine email client with very promising results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Reference9 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating and Analyzing Program Call Graphs using Ontology;2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools);2022-11

2. Comparison of Data Mining Techniques in the Cloud for Software Engineering;Computer Communications and Networks;2020

3. Data Integration of Legacy ERP System Based on Ontology Learning from SQL Scripts;Communications in Computer and Information Science;2019

4. The effect of automatic concern mapping strategies on conceptual cohesion measurement;Information and Software Technology;2016-07

5. Utilizing feature location techniques for feature addition and feature enhancement;Proceedings of the 29th ACM/IEEE international conference on Automated software engineering;2014-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3