ASSESSMENT OF LINUX' DATA PATH IMPLEMENTATIONS FOR DOWNLOAD AND STREAMING

Author:

HALVORSEN PÅL12,DALSENG TOM ANDERS1,GRIWODZ CARSTEN12

Affiliation:

1. Department of Informatics, University of Oslo, Oslo, Norway

2. Simula Research Laboratory, Oslo, Norway

Abstract

Distributed multimedia streaming systems are increasingly popular due to technological advances, and numerous streaming services are available today. On servers or proxy caches, there is a huge scaling challenge in supporting thousands of concurrent users that request delivery of high-rate, time-dependent data like audio and video, because this requires transfers of large amounts of data through several sub-systems within a streaming node. Unnecessary copy operations in the data path can therefore contribute significantly to the resource consumption of streaming operations. Despite previous research, off-the-shelf operating systems have only limited support for data paths that have been optimized for streaming. Additionally, system call overhead has grown with newer operating systems editions, adding to the cost of data movement. Frequently, it is argued that these issues can be ignored because of the continuing growth of CPU speeds. However, such an argument fails to take problems of modern streaming systems into account. The dissipation of heat generated by disks and high-end CPUs is a major problem of data centers, which would be alleviated if less power-hungry CPUs could be used. The power budget of mobile devices, which are increasingly used for streaming as well, is tight, and reduced power consumption an important issue. In this paper, we prove that these operations consume a large amount of resources, and we therefore revisit the data movement problem and provide a comprehensive evaluation of possible streaming data I/O paths in the Linux 2.6 kernel. We have implemented and evaluated several enhanced mechanisms and show how to provide support for more efficient memory usage and reduction of user/kernel space switches for content download and streaming applications. In particular, we are able to reduce the CPU usage by approximately 27% compared to the best approach without kernel modifications, by removing copy operations and system calls for a streaming scenario in which RTP headers must be added to stored data for sequence numbers and timing.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The performance improvements of highly-concurrent grid-based server;Simulation Modelling Practice and Theory;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3