An Ensemble Keyword Extraction Model for News Texts with Statistical and Graphical Features

Author:

Abibullayeva Aiman1ORCID,Kılıç Hüma2ORCID,Cetin Aydin2ORCID

Affiliation:

1. Computer Engineering Department, Faculty of Engineering, Akhmet Yassawi University, Turkistan, Kazakhstan

2. Computer Engineering Department, Faculty of Technology, Gazi University, Ankara 06500, Türkiye

Abstract

Keyword extraction is an essential tool for many text mining applications such as automatic indexing, summarizing, classification, clustering and automatic filtering. Automated keyword extraction is essential as the daily text data to be reached and processed have increased tremendously over the Internet, e.g. millions of news articles are published daily online. In this paper, a novel ensemble model for automatic extraction of keywords from news articles is proposed. The proposed model handles keyword extraction as a sequence labeling task. Two sub-modules representing the statistical and graphical features by their calculated scores for each input token were combined in the token classification module. The Ensemble Token Classification module was trained and tested separately with the ensemble algorithms Random Forest, XgBoost, Decision Tree and Voting Classification. For training, we collected two news datasets from Kazakh and Russian news sites published in Cyrillic alphabet. We also collected an Arabic news dataset, ArabianNews. The performance of the model was also compared with the widely used 500N-KPCrowd dataset in the literature, which consists of English news content in Latin alphabet. The proposed model achieved the best performance with an [Formula: see text]-score of 0.71 and 0.86 on the 500N-KPCrowd and Russian datasets, respectively. We attained the best [Formula: see text]-score (0.97) with the KazakhNews and ArabianNews datasets.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3