LEARNING BETTER INSPECTION OPTIMIZATION POLICIES

Author:

LUMPE MARKUS1,VASA RAJESH1,MENZIES TIM2,RUSH REBECCA2,TURHAN BURAK3

Affiliation:

1. Faculty of ICT, Swinburne University of Technology, Hawthorn, Australia

2. CSEE, West Virginia University, Morgantown, West Virginia, USA

3. Info Processing Science, University of Oulu, Oulu, Finland

Abstract

Recent research has shown the value of social metrics for defect prediction. Yet many repositories lack the information required for a social analysis. So, what other means exist to infer how developers interact around their code? One option is static code metrics that have already demonstrated their usefulness in analyzing change in evolving software systems. But do they also help in defect prediction? To address this question we selected a set of static code metrics to determine what classes are most "active" (i.e., the classes where the developers spend much time interacting with each other's design and implementation decisions) in 33 open-source Java systems that lack details about individual developers. In particular, we assessed the merit of these activity-centric measures in the context of "inspection optimization" — a technique that allows for reading the fewest lines of code in order to find the most defects. For the task of inspection optimization these activity measures perform as well as (usually, within 4%) a theoretical upper bound on the performance of any set of measures. As a result, we argue that activity-centric static code metrics are an excellent predictor for defects.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3