Analyzing the Stationarity Process in Software Effort Estimation Datasets

Author:

Bosu Michael Franklin1,MacDonell Stephen G.2,Whigham Peter A.2

Affiliation:

1. Centre for Information Technology, Waikato Institute of Technology, Hamilton 3240, New Zealand

2. Department of Information Science, University of Otago, Dunedin 9054, New Zealand

Abstract

Software effort estimation models are typically developed based on an underlying assumption that all data points are equally relevant to the prediction of effort for future projects. The dynamic nature of several aspects of the software engineering process could mean that this assumption does not hold in at least some cases. This study employs three kernel estimator functions to test the stationarity assumption in five software engineering datasets that have been used in the construction of software effort estimation models. The kernel estimators are used in the generation of nonuniform weights which are subsequently employed in weighted linear regression modeling. In each model, older projects are assigned smaller weights while the more recently completed projects are assigned larger weights, to reflect their potentially greater relevance to present or future projects that need to be estimated. Prediction errors are compared to those obtained from uniform models. Our results indicate that, for the datasets that exhibit underlying nonstationary processes, uniform models are more accurate than the nonuniform models; that is, models based on kernel estimator functions are worse than the models where no weighting was applied. In contrast, the accuracies of uniform and nonuniform models for datasets that exhibited stationary processes were essentially equivalent. Our analysis indicates that as the heterogeneity of a dataset increases, the effect of stationarity is overridden. The results of our study also confirm prior findings that the accuracy of effort estimation models is independent of the type of kernel estimator function used in model development.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3