FEATURE SELECTION FOR DATASETS WITH IMBALANCED CLASS DISTRIBUTIONS

Author:

KAMAL ABU H. M.1,ZHU XINGQUAN1,PANDYA ABHIJIT1,HSU SAM1,NARAYANAN RAMASWAMY2

Affiliation:

1. Department of Computer Science & Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

2. Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA

Abstract

Feature selection for supervised learning concerns the problem of selecting a number of important features (w.r.t. the class labels) for the purposes of training accurate prediction models. Traditional feature selection methods, however, fail to take the sample distributions into consideration which may lead to poor prediction for minority class examples. Due to the sophistication and the cost involved in the data collection process, many applications, such as biomedical research, commonly face biased data collections with one class of examples (e.g., diseased samples) significantly less than other classes (e.g., normal samples). For these applications, the minority class examples, such as disease samples, credit card frauds, and network intrusions, are only a small portion of the data but deserve full attention for accurate prediction. In this paper, we propose three filtering techniques, Higher Weight (HW), Differential Minority Repeat (DMR) and Balanced Minority Repeat (BMR), to identify important features from datasets with biased sample distribution. Experimental comparisons with the ReliefF method on five datasets demonstrate the effectiveness of the proposed methods in selecting informative features for accurate prediction of minority class examples.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3