Affiliation:
1. Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia
Abstract
Nowadays, one of the biggest challenges in banking sector, certainly, is assessment of the client’s creditworthiness. In order to improve the decision-making process and risk management, banks resort to using data mining techniques for hidden patterns recognition within a wide data. The main objective of this study is to build a high-performance customized credit scoring model. The model named Reliable client is based on Bank’s real dataset and originally built by applying four different classification algorithms: decision tree (DT), naive Bayes (NB), generalized linear model (GLM) and support vector machine (SVM). Since it showed the greatest results, but also seemed as the most appropriate algorithm, the adopted model is based on GLM algorithm. The results of this model are presented based on many performance measures that showed great predictive confidence and accuracy, but we also demonstrated significant impact of data pre-processing on model performance. Statistical analysis of the model identified the most significant parameters on the model outcome. In the end, created credit scoring model was evaluated using another set of real data of the same Bank.
Funder
European Regional Development Fund
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献