Affiliation:
1. Fraunhofer IESE, Kaiserslautern, Germany
2. University of Helsinki, Helsinki, Finland
3. Vector Informatik GmbH, Stuttgart, Germany
Abstract
A well-known approach for identifying defect-prone parts of software in order to focus testing is to use different kinds of product metrics such as size or complexity. Although this approach has been evaluated in many contexts, the question remains if there are further opportunities to improve test focusing. One idea is to identify other types of information that may indicate the location of defect-prone software parts. Data from software inspections, in particular, appear to be promising. This kind of data might already lead to software parts that have inherent difficulties or programming challenges, and in consequence might be defect-prone. This article first explains how inspection and product metrics can be used to focus testing activities. Second, we compare selected product and inspection metrics commonly used to predict defect-prone parts (e.g. size and complexity metrics, inspection defect content metrics, and defect density metrics). Based on initial experience from two case studies performed in different environments, the suitability of different metrics for predicting defect-prone parts is illustrated. The studies revealed that inspection defect data seems to be a suitable predictor, and a combination of certain inspection and product metrics led to the best prioritizations in our contexts. In addition, qualitative experience is presented, which substantiates the expected benefit of using inspection results to optimize testing.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献