Semantic Trajectory Knowledge Discovery: A Promising Way to Extract Meaningful Patterns from Spatiotemporal Data

Author:

Chakri Sana1,Raghay Said1,El Hadaj Salah2

Affiliation:

1. LAMAI Laboratory, Department of Applied Mathematics and Computer Sciences, Cadi Ayyad University, Av. Abdelkarim El Khattabi, Guéliz, Marrakesh, Morocco

2. National School of Trade and Management, Cadi Ayyad University, Av. Allal El Fassi Amerchic, Marrakesh, Morocco

Abstract

Spatiotemporal data mining studies the field of discovering interesting patterns from large spatiotemporal databases. Although these databases generate a huge volume of data daily from satellite images and mobile sensors like GPS, among these data we find first spatiotemporal and geographical data; secondly, the trajectories browsed by moving objects in some time intervals. Combination of these types of data leads to producing semantic trajectory data. Enriching trajectories with semantic geographical information leads to ease queries, analysis, and mining, in order to give more meaning to behaviors potentially extracted from trajectories. Therefore, applying mining techniques on semantic trajectories continue to prove to be a success story in discovering useful and nontrivial behavioral patterns of moving objects. The purpose of this paper is to make an overview of spatiotemporal knowledge discovery (STKD) and techniques recently used to extract knowledge from spatiotemporal data based on analysis of recent literature. Then leading towards a deeper analysis about semantic trajectory knowledge discovery as a specified field from STKD that integrates trajectory sample points with geographical data before applying mining techniques in order to extract behavioral knowledge from semantic trajectories which can be more useful and significant for the application users.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Reference41 articles.

1. A. Longley, M. F. Goodchild, D. J. Maguire and D. W. Rhind (eds.), in Geographical Information Systems: Principles and Technical Issues (John Wiley and Sons, New York, 1999), pp. 253–266.

2. GeoDa: An Introduction to Spatial Data Analysis

3. Geographic Data Mining and Knowledge Discovery

4. Spatiotemporal Data Mining: A Computational Perspective

5. Spatiotemporal Data Mining: Issues, Tasks And Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories Databases;34th International Conference on Scientific and Statistical Database Management;2022-07-06

2. HiAtGang: How to Mine the Gangs Hidden Behind DDoS Attacks;Chinese Journal of Electronics;2022-03

3. Exploring human behavior patterns and socio‐demographic factors based on American Time Use Survey;Concurrency and Computation: Practice and Experience;2022-02-13

4. Activity Behavior Pattern Mining and Recognition;Mobile Multimedia Communications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3