DEVELOPMENTAL SIZE ESTIMATION FOR OBJECT-ORIENTED SOFTWARE BASED ON ANALYSIS MODEL

Author:

ARUMUGAM CHAMUNDESWARI1,BABU CHITRA1

Affiliation:

1. Department of Computer Science and Engineering, Sri SivaSubramaniya Nadar College of Engineering, Rajiv Gandhi Salai, SSN Nagar, Tamil Nadu – 603 110, India

Abstract

Software size estimation at the early analysis phase of software development lifecycle is crucial for predicting the associated effort and cost. Analysis phase captures the functionality addressed in the software to be developed in object-oriented software development life-cycle. Unified modeling language captures the functionality of the software at the analysis phase based on use case model. This paper proposes a new method named as use case model function point to estimate the size of the object-oriented software at the analysis phase itself. While this approach is based on use case model, it also adapts the function point analysis technique to use case model. The various features such as actors, use cases, relationship, external reference, flows, and messages are extracted from use case model. Eleven rules have been derived as guidelines to identify the use case model components. The function point analysis components are appropriately mapped to use case model components and the complexity based on the weightage is specified to calculate use case model function point. This proposed size estimation approach has been evaluated with the object-oriented software developed in our software engineering laboratory to assess its ability to predict the developmental size. The results are empirically analysed based on statistical correlation for substantiating the proposed estimation method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DevOps supports regression testing;INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICoBE 2021);2023

2. On the value of project productivity for early effort estimation;Science of Computer Programming;2022-07

3. Predicting software effort from use case points: A systematic review;Science of Computer Programming;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3