Affiliation:
1. Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
Abstract
We show that the matrix A(g), representing the element g = ((xy)2(xy2)2)m (m ≥ 1) of the modular group PSL(2,Z) = 〈x,y : x2 = y3 = 1〉, where [Formula: see text] and [Formula: see text], is a 2 × 2 symmetric matrix whose entries are Pell numbers and whose trace is a Pell–Lucas number. If g fixes elements of [Formula: see text], where d is a square-free positive number, on the circuit of the coset diagram, then d = 2 and there are only four pairs of ambiguous numbers on the circuit.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献