Stability of Gorenstein Classes of Modules

Author:

Bouchiba Samir1

Affiliation:

1. Department of Mathematics, University Moulay Ismail, Meknes 50000, Morocco

Abstract

The purpose of this paper is to give, via totally different techniques, an alternate proof to the main theorem of [18] in the category of modules over an arbitrary ring R. In effect, we prove that this theorem follows from establishing a sequence of equalities between specific classes of R-modules. Actually, we tackle the following natural question: What notion emerges when iterating the very process applied to build the Gorenstein projective and Gorenstein injective modules from complete resolutions? In other words, given an exact sequence of Gorenstein injective R-modules G= ⋯ → G1→ G0→ G-1→ ⋯ such that the complex Hom R(H,G) is exact for each Gorenstein injective R-module H, is the module Im (G0→ G-1) Gorenstein injective? We settle such a question in the affirmative and the dual result for the Gorenstein projective modules follows easily via a similar treatment to that used in this paper. As an application, we provide the Gorenstein versions of the change of rings theorems for injective modules over an arbitrary ring.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gorenstein modules and dimension over large families of infinite groups;Collectanea Mathematica;2024-09-14

2. Gorenstein objects in the category of N-complexes;Journal of Algebra and Its Applications;2020-07-04

3. Resolutions and Stability of Gorenstein Classes of Modules;Bulletin of the Malaysian Mathematical Sciences Society;2019-03-18

4. Gorenstein projective complexes with respect to cotorsion pairs;Czechoslovak Mathematical Journal;2018-07-10

5. On the Stability Question of Gorenstein Categories;Applied Categorical Structures;2017-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3