Affiliation:
1. Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
Abstract
We prove that every free metabelian non-cyclic group has a finitely generated isolated subgroup which is not separable in the class of nilpotent groups. As a corollary, we prove that for every prime number p, an arbitrary free metabelian non-cyclic group has a finitely generated p′-isolated subgroup which is not p-separable.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献