Radiation Effects in Heat Transfer Mechanisms by Dispersive Materials: Numerical Analysis in Diffusive Enclosure Model of Thermal Insulation

Author:

Che Seliman Muhd Azi Bin1ORCID,Hirasawa Yoshio1

Affiliation:

1. Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama-Shi, Toyama 930-8555, Japan

Abstract

The current development of global warming and CO2 emission problems cannot be overlooked. Thus, global scale measures of efforts are becoming crucial. Thermal properties of insulation materials need to be considered as high performance thermal insulation systems are crucial for efficient energy saving. The most important parameter as indicator of a thermal insulation material is the effective thermal conductivity, but elements that affect the thermal insulation performance are rather complicated. Generally, conduction and radiation heat transfer are needed to be separately considered in precisely evaluating the thermal insulation performance as they coexist in the heat transfer process inside a multilayer insulation system. In this paper, numerical analysis of a complete diffusive enclosure model as a thermal insulation is observed to investigate the radiation effects by its dispersive heat transfer mechanisms. View factor of each relatively large dispersed material is derived in the enclosure model, where it is applicable to various shapes and any particular arrangements of dispersed materials. As this paper is the first part of a three-part working research paper, numerical analysis in this paper is carried out by assuming that the medium within the space inside the insulation system is taken to be nonparticipating, therefore conduction and convection effects during the heat exchange are negligible. This paper will be continued with application of the numerical analysis in observing radiation heating effects by wall-ceiling integration towards indoor environment and radiation–conduction heat transfer mechanisms in one-dimensional multilayer insulation system.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3